

PyzoFlex[®]

An award winning, printed & flexible sensor technology for dynamic sensing of pressure/temperature changes as well as energy harvesting

Advantages

In various applications PyzoFlex[®] sensors show a range of unique advantages such as:

.

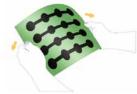
- Printability
- Scalability (large Area)
- Cost Efficiency

- Flexibility
- Freedom of Substrates & Design
- Robustness

- High dynamic detection
- Energy Self-Sustaining
- Spatial Resolution

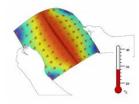
Energy harvesting

- Body movement
- Vibration
- Temperature changes
- Deformation
- Wind



Pressure sensing

- Membrane Keyboards
- Impact Detection
- Touch Interface
- Smart Surface/Floor
- Switch


.

- Security System
- Ambient Assisted Living

Flexible Sensors (bending)

- Flexible Displays
- Gaming
- Collaborative Robotics
- Wearable Consumer Electronics
- Smart Skin

Applications

Temperature sensing

- Laser Safety Systems
- IR-Detector
- Touchless Interaction
- Human Body Radiation

Key Facts: Sensor

Technology	Principle	Figure-of-Merit	Parameter
Piezoelectric- Pyroelectric sensing (active)	$\Delta Q \rightarrow \Delta I, \Delta V$ Charge generation	Piezoelectric Coefficient $d_{33,31} = \Delta Q/F$ Pyroelectric Coefficient $P = \Delta Q/\Delta T$ $(\Delta I, \Delta V = S \star \sigma)$	Dynamic Pressure / Temperature, Strain, Vibration, Ultrasound Transducer, Accelerator,

Key Facts Sensor					
Pyroelectric Coefficient p	20 – 30 μC/m²K	Depending on polymer composition & crystallinity			
Piezoelectric Coefficient d ₃₃	-25 – -38 pC/N	Depending on polymer composition & crystallinity			
Remnant Polarization	60 – 75 μC/m²	Depending on fabrication process			
Coercive Field	50 MV/m				
Curie Temperature	120°C – 140°C	Depending on polymer composition			

Standard fabrication process by screen-printing

Substrate	1 st Electrode	Active Material	2 nd Electrode	Connections
				33
Plastic, paper, textile, glass, metal, transfer foils	PEDOT: PSS (conductive, transparent polymer)	Copolymer: PVDF:TrFE-Ink (patented ink formulation)	PEDOT:PSS (for semi-transparent sensors) Carbon	Ag lines for connection to read-out electronics

Key Facts: Sensor-Fabrication

- Low temperature fabrication on flexible/rigid substrates (≤ 100°C)
- Substrate sizes up to 420 x 420mm with a thickness ≤ 20mm
- Semi-transparent sensors if solely PEDOT:PSS is used as electrode material
- Cost efficient sheet to sheet manufacturing by industrial screen printing process
- Application specific sensor shapes based on CAD designed screen masks (max. resolution = 12000dpi)
- Feature sizes down to 100µm (depending on material and screen)

Key Facts: Printing Equipment

- Thieme LAB 1000
- Alignment accuracy: (±) 10µm
- Full camera alignment
- High reproducibility due to software control
- Monitoring of printing parameters
- Process transfer to industrial lines

CONTACT

JOANNEUM RESEARCH Forschungsgesellschaft mbH

Institute for Surface Technologies and Photonics

Martin Zirkl

Franz-Pichler-Strasse 30 8160 Weiz, Austria

Phone +43 316 876-30 00 Fax +43 316 8769-30 10

martin.zirkl@joanneum.at

materials@joanneum.at www.joanneum.at/materials